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Abstract

Context-adaptive inference extends classical statistical modeling by allowing parameters to vary
across individuals, environments, or tasks. This adaptation may be explicit—through parameterized
functions of context—or implicit, via interactions between context and input features. In this review,
we survey recent advances in modeling sample-speci�c variation, including varying-coe�cient models,
transfer learning, and in-context learning. We also examine the emerging role of foundation models
as �exible context encoders. Finally, we outline key challenges and open questions for the
development of principled, scalable, and interpretable context-adaptive methods.

Introduction

A growing number of methods across statistics and machine learning aim to model how data
distributions vary across individuals, environments, or tasks. This interest in context-adaptive
inference re�ects a shift from population-level models toward those that account for sample-speci�c
variation.

In statistics, varying-coe�cient models allow model parameters to change smoothly with covariates.
In machine learning, meta-learning and transfer learning enable models to adapt across tasks or
domains. More recently, in-context learning – by which foundation models adapt behavior based on
support examples without parameter updates – has emerged as a powerful mechanism for
personalization in large language models.

These approaches originate from di�erent traditions but share a common goal: to use context in the
form of covariates, support data, or task descriptors to guide inference about sample-speci�c
parameters.

We formalize the setting by assuming each observation  is drawn from a sample-speci�c
distribution:

where  denotes the parameters governing the distribution of the th observation. In the most
general case, this formulation allows for arbitrary heterogeneity. However, estimating  distinct
parameters from  observations is ill-posed without further structure.

To make the problem tractable, context-adaptive methods introduce structure by assuming that
parameters vary systematically with context:

This deterministic formulation is common in varying-coe�cient models and many supervised
personalization settings.

More generally,  may be drawn from a context-dependent distribution:

as in hierarchical Bayesian models or amortized inference frameworks. This stochastic formulation
captures residual uncertainty or unmodeled variation beyond what is encoded in .

The function  encodes how parameters vary with context, and may be linear, smooth, or
nonparametric, depending on the modeling assumptions. In this view, the challenge of context-
adaptive inference reduces to estimating or constraining  given data .
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Viewed this way, context-adaptive inference spans a spectrum—from models that seek invariance
across environments to models that enable personalization at the level of individual samples. For
example:

Population models assume  for all .
Invariant risk minimization [1] identi�es components of  that remain stable across
distributions.
Transfer learning assumes partial invariance, learning domain-speci�c shifts around a shared
representation.
Varying-coe�cient models allow  to vary smoothly with observed context.
In-context learning treats parameters as an implicit function of support examples.

In this review, we survey methods across this spectrum. We highlight their shared foundations, clarify
the assumptions they make about , and explore the emerging connections between classical
approaches such as varying-coe�cient models and modern inference mechanisms like in-context
learning.

Population Models

The fundamental assumption of most models is that samples are independent and identically
distributed. However, if samples are identically distributed they must also have identical parameters.
To account for parameter heterogeneity and create more realistic models we must relax this
assumption, but the assumption is so fundamental to many methods that alternatives are rarely
explored. Additionally, many traditional models may produce a seemingly acceptable �t to their data,
even when the underlying model is heterogeneous. Here, we explore the consequences of applying
homogeneous modeling approaches to heterogeneous data, and discuss how subtle but meaningful
e�ects are often lost to the strength of the identically distributed assumption.

Failure modes of population models can be identi�ed by their error distributions.

Mode collapse: If one population is much larger than another, the other population will be
underrepresented in the model.

Outliers: Small populations of outliers can have an enormous e�ect on OLS models in the parameter-
averaging regime.

Phantom Populations: If several populations are present but equally represented, the optimal
traditional model will represent none of these populations.

Lemma: A traditional OLS linear model will be the average of heterogeneous models.

Context-informed models

Without further assumptions, sample-speci�c parameter estimation is ill-de�ned. Single sample
estimation is prohibitively high variance. We can begin to make this problem tractable by taking note
from previous work and imposing assumptions on the topology of , or the relationship between 
and contextual variables.

Conditional and Cluster Models

While conditional and cluster models are not truly personalized models, the spirit is the same. These
models make the assumption that models in a single conditional or cluster group are homogeneous.

θi = θ i
θ
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More commonly this is written as a group of observations being generated by a single model. While
the assumption results in fewer than  models, it allows the use of generic plug-in estimators.
Conditional or cluster estimators take the form

where  is the log-likelihood of  on  and  speci�es the covariate group that samples are
assigned to, usually by specifying a condition or clustering on covariates thought to a�ect the
distribution of observations. Notably, this method produces fewer than  distinct models for 
samples and will fail to recover per-sample parameter variation.

Distance-regularized Models

Distance-regularized models assume that models with similar covariates have similar parameters and
encode this assumption as a regularization term.

The second term is a regularizer that penalizes divergence of ’s with similar .

Parametric Varying-coe�cient models

Original paper (based on a smoothing spline function): [2] Markov networks: [3] Linear varying-
coe�cient models assume that parameters vary linearly with covariates, a much stronger assumption
than the classic varying-coe�cient model but making a conceptual leap that allows us to de�ne a form
for the relationship between the parameters and covariates.

Semi-parametric varying-coe�cient Models

Original paper: [4] 2-step estimation with RBF kernels: [5]

Classic varying-coe�cient models assume that models with similar covariates have similar
parameters, or – more formally – that changes in parameters are smooth over the covariate space.
This assumption is encoded as a sample weighting, often using a kernel, where the relevance of a
sample to a model is equivalent to its kernel similarity over the covariate space.

This estimator is the simplest to recover  unique parameter estimates. However, the assumption
here is contradictory to the partition model estimator. When the relationship between covariates and
parameters is discontinuous or abrupt, this estimator will fail.

Contextualized Models

Seminal work [6] Contextualized ML generalization and applications: [7], [8], [9], [10], [11], [12], [13],
[14]

Contextualized models make the assumption that parameters are some function of context, but make
no assumption on the form of that function. In this regime, we seek to estimate the function often
using a deep learner (if we have some di�erentiable proxy for probability):
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Latent-structure Models

Partition Models

Markov networks: [15] Partition models also assume that parameters can be partitioned into
homogeneous groups over the covariate space, but make no assumption about where these
partitions occur. This allows the use of information from di�erent groups in estimating a model for a
each covariate. Partition model estimators are most often utilized to infer abrupt model changes over
time and take the form

Where the regularizaiton term might take the form

This still fails to recover a unique parameter estimate for each sample, but gets closer to the spirit of
personalized modeling by putting the model likelihood and partition regularizer in competition to �nd
the optimal partitions.

Fine-tuned Models and Transfer Learning

Review: [16] Noted in foundational literature for linear varying coe�cient models [4]

Estimate a population model, freeze these parameters, and then include a smaller set of personalized
parameters to estimate on a smaller subpopulation.

Context-informed and Latent-structure models

Seminal paper: [17]

Key idea: negative information sharing. Di�erent models should be pushed apart.

Theoretical Foundations and Advances in Varying-Coe�cient
Models

Principles of Adaptivity

TODO: Analyzing the core principles that underpin adaptivity in statistical modeling.

Advances in Varying-Coe�cient Models

TODO: Outlining key theoretical and methodological breakthroughs.
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Integration with State-of-the-Art Machine Learning

TODO: Assessing the enhancement of VC models through modern ML technologies (e.g. deep
learning, boosted trees, etc).

Context-Invariant Training

TODO: The converse of VC models, exploring the implications of training context-invariant models.
e.g. out-of-distribution generalization, robustness to adversarial attacks.

Context-Adaptive Interpretations of Context-Invariant Models

In the previous section, we discussed the importance of context in model parameters. Such context-
adaptive models can be learned by explicitly modeling the impact of contextual variables on model
parameters, or learned implicitly in a model containing interaction e�ects between the context and
the input features. In this section, we will focus on recent progress in understanding how context
in�uences interpretations of statistical models, even when the model was not originally designed to
incorporate context.

TODO: Discussing the implications of context-adaptive interpretations for traditional models. Related
work including LIME/DeepLift/DeepSHAP.

Opportunities for Foundation Models

Expanding Frameworks

TODO: De�ne foundation models, Explore how foundation models are rede�ning possibilities within
statistical models.

Foundation models as context

TODO: Show recent progress and ongoing directions in using foundation models as context.

Applications, Case Studies, and Evaluations

Implementation Across Sectors

TODO: Detailed examination of context-adaptive models in sectors like healthcare and �nance.

Performance Evaluation

TODO: Successes, failures, and comparative analyses of context-adaptive models across applications.

Technological and Software Tools

Survey of Tools



TODO: Reviewing current technological supports for context-adaptive models.

Selection and Usage Guidance

TODO: O�ering practical advice on tool selection and use for optimal outcomes.

Future Trends and Predictions

Emerging Technologies

TODO: Identifying upcoming technologies and predicting their impact on context-adaptive learning.

Advances in Methodologies

TODO: Speculating on potential future methodological enhancements.

Open Problems

Theoretical Challenges

TODO: Critically examining unresolved theoretical issues like identi�ability, etc.

Ethical and Regulatory Considerations

TODO: Discussing the ethical landscape and regulatory challenges, with focus on bene�ts of
interpretability and regulatability.

Complexity in Implementation

TODO: Addressing obstacles in practical applications and gathering insights from real-world data.

TODO: Other open problems?

Conclusion

Overview of Insights

TODO: Summarizing the main �ndings and contributions of this review.

Future Directions

TODO: Discussing potential developments and innovations in context-adaptive statistical inference.
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